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Ultimate strain analysis of rock and

soil foundation of underground tunnel

Le Wang1, Yingren Zheng2, Guoyuan Peng1,
Jianping Xin2

Abstract. In order to improve effectiveness of ultimate strain analysis of geotechnical ma-
terials for foundation of underground tunnel, an ultimate strain analysis method of geotechnical
materials for foundation of underground tunnel based on discretization finite element method of
phase change and displacement field was proposed. Firstly, strain analysis model of geotechnical
materials for foundation of underground tunnel under fully saturated state has porous matrix and
crack characteristics; secondly, a discretization finite element method was proposed. It realized
simulated calculation process design of phase change by using dynamic solving of phase field and
displacement field; finally, effectiveness of proposed algorithm was verified by empirical analysis.
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1. Introduction

Mechanical coupling problem of geotechnical materials for foundation of under-
ground tunnel is the problem [1, 2] encountered frequently in earth science field.
As injecting or removing change of pore pressure formed by geology of geotechnical
materials, geotechnical deformation can be caused. For example, how to avoid sedi-
mentation caused by excessive underground water pumping is very important in use
and management of underground water. At the same time, similar problems also
exist in the collection process of petroleum and natural gas. For example, coupling
flow mechanical model can be used to determine safe injection pressure to avoid
damaging integrity of geotechnical material cover in the process of CO2 sequestra-
tion. Especially geomechanical effect in formation of fissured geotechnical materials
is more important. Key point of the work is to study numerical solution method
of fully fluid-solid coupled mechanical model of large fracturing formation. Interest
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point studied here is to predicted and pre-existing formation behavior [3] of crack
and fault.

Two main aspects studied by such problems are flow of geotechnical materials
and geotechnical mechanics. As geometric correlation is complex, solution adopted
in the Thesis is simulation based on discretization finite element of phase change and
displacement field. There have been many mature technologies for flow simulation
of discrete crack of porous matrix. For example, classical finite element technology
can be used to implement discrete simulation [4] for multiple phase flow of cracks of
geotechnical materials in the frame of finite element. There are mixed finite element
method [5], discontinuous finite element method [6] and so on afterwards. Mixed
pressure equation and finite volume transmission equation of finite volume method
can be adopted for research [7] in finite volume frame.

Finite element and boundary element method are frequently adopted for anal-
ysis in mechanical analysis of geotechnical materials. Finite volume method and
flow mechanical coupling modeling method also have mature application. Different
from seepage flow model, cracks have heterogeneity in the aspect of permeability, so
mechanical behavior of fissured rock mass is more complex. Solid contact deforma-
tion problem has been widely studied. Different approximate technologies can be
used, such as finite element, extended finite element and so on. Realizing stable dis-
cretization scheme of non-linear contact problems is relatively difficult [9]. Stability
of classic methods such as Lagrange multiplier method and regularization penalty
method is poor. Stabilization equation of contact mechanics problem is obtained by
using parameter stabilization in Literature [10]. A Nitsche handling method is pro-
posed in Literature [11]. The method can be regarded as uniform penalty function
method. When model parameter selection is proper, corresponding discrete equation
set usually has better adjustability.

Flow and mechanical coupling behaviors in geotechnical materials are usually
non-linear and hydraulic conductivity and frictional resistance are available to simu-
late crack sliding. Crack model of discrete flow-solid coupling mechanics has already
been proposed in Literatures at present. Different from method in the Thesis, it
takes no account of contact problem of crack. For example, contact problem of frac-
ture surface is not taken into account in Literature [12] and fracture characteristics
are taken into account in Literature [13]. One grid is used to represent formation
of unstructured grid of discrete crack here in the work. Different strategies can be
used to solve coupling flow and mechanical problem. Complete implicit equation
is used to solve non-linear equation, boundary conditions and related constitutive
relation of coupling system in the work. Crack and fault are expressed in large scope
or effective characteristics of fissured rock mss are calculated in small scope.

2. Mathematical mode

Mathematical mode proposed here describes the behavior that porous geotech-
nical materials under fully saturated state contain a set of fractures. In order to
reach the purpose of modeling, two areas are divided: porous matrix and crack, and
a method that can compress single-phase geotechnical material is proposed.
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Crack is defined as two planes contacting mutually. Mechanical model of cracks
of geotechnical materials must be described through superficial stress of crack and
displacement field change. Unstressed contact [14] between surfaces of two geotech-
nical materials is described in Fig. 1.
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Fig. 1. Non stress contact cracks in shale

g0 is characteristic distance width of crack in Fig. 1. When g0 = 0, it is corre-
sponding to “ideal” contact status. Relative position of the surface can be defined
by gap function g = (gN , gT ). Normal component gN is defined as relative displace-
ment related to reference distance g0. Tangential component represents length of
displacement vector in the fracture surface of geotechnical materials. Normal gap
gN has three different configurations: (1) gN = 0 represents unstressed free contact;
(2) gN > 0 represents penetration phenomenon caused by deformation of contact
points; (3) gN < 0 represents no physical contact.

Traction t in the surface can be defined as mapping of Terzaghi effective stress
tensor σ′ on normal component n. Local coordinate system is used to obtain:

t = −σ′n = tNn+ tT τ . (1)

Traction (+,−) can be defined for two surfaces of track of geotechnical materials
respectively; the following equation can be obtained:{

t+N = −t−N = tN ,

t+T = −t−T = tT .
(2)

If two surfaces lose physical contact, crack surface of geotechnical materials is
separated by pressure of geotechnical materials. n·σ ·n = −p at this time. Therefore,
tN = 0. Dynamic behavior of crack can be described by traction determined by gap
function: 

tN = N (gN )

tT = F(tN ), gT 6= 0

tT < F(tN ), gT = 0

(3)

Where, gT 6= 0 represents sliding state and gT = 0 represents sticky state. For
negative normal gap, crack surface loses physical contact. Fracture flow capacity
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can be evaluated based on the following models:

Cf = −g
3
N

12
+ Cf,0 . (4)

3. Finite element calculation

3.1. Discretization finite element

Variation of total energy functional of sum of three energies of volume chemical
energy, interface energy and elastic strain energy is solved; the following equation
can be obtained:

δGtot
δηp

=
∂[ϕchem(ηp, T ) + ϕe(εij , ηp, T )]

∂ηp
− d

dxi
(
∂ϕint(ηp,i)

∂ηp,i
) p = 1, 2, 3...n . (5)

Put equation (3-1)into Ginzburg-Landau equation of equation(2-1), the following
equation can be obtained:

∂ηp
∂t
− Lβ∇ · ∇ηp = −L∂(ϕstn + ϕchem)

∂ηp
+ ξp p = 1, 2, 3...n . (6)

Equation (6) is similar to unstable control equation of temperature field. Con-
tinuous C0 is only needed to be guaranteed and regular finite element interpolation
is only needed to be adopted in finite element discretization. Variable order param-
eter η in phase field shall be discrete with finite element and node variable shall
be adopted to represent order parameter η. Equation (6) shall be discrete, and the
following equation can be obtained:

[Cη]
∂{ηk}
∂t

+ [Kη]{ηk} = {Qk(η1, η2, ...ηn, {σ})} k = 1, 2, 3...n . (7)

3.2. Dynamic solving of phase field

The relation between order parameter at the time of ti+1 and at the time of ti
in phase field is expressed by the following equation:

ηi+1 = ηi + (1− β)∆tη̇i + β∆tη̇i+1 . (8)

Put the above recursion equation into phase field equation after discretization;
the following equation can be obtained after arrangement

[K̂]{ηp}i+1 = {Q̂p} . (9)

Where equivalent stiffness matrix and equivalent right-hand item are:

[K̂] = [C] + ∆tβ[Kc] . (10)
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{Q̂p} = (1− β)∆t{Qp}i + β∆t{Qp}i+1 + ([C]− (1− β)∆t[Kc]){ηp}i . (11)

The maximum time step of the solving method with numerical stability is:

∆t =
2

(1− 2β)λmax
. (12)

λ is the maximum eigenvalue of equation([Kc]− λ[C]){T̄} = {0}.
When β=0, the method is explicit integration method of time domain. Equation

(11) and equation (12) can be transformed into

[K̂] = [C] . (13)

{Q̂k} = ∆t{Qk}i + ([C]−∆t[Kc]){ηk}i . (14)

3.3. Dynamic solving of displacement field

(1) Newmark-β method:
Relation between displacement, speed and accelerated speed at the time of ti+1

and displacement, speed and accelerated speed at the time of ti in Newmark-β
method can be expressed by the following equation:

u̇i+1 = u̇i + (1− γ)∆tüi + γ∆tüi+1 . (15)

ui+1 = ui + ∆tu̇i + (
1

2
− β)∆t2üi + β∆t2üi+1 . (16)

Arrange dynamic equation of displacement field of recursion equation of equation
(15) and equation (16), and then step-by-step integration equation can be obtained:

[K̂]{u}i+1 = {P̂}i+1 ,

{u̇}i+1 =
γ

β∆t
({u}i+1 − {u}i) + (1− γ

β
){u̇}i + ∆t(1− γ

2β
){ü}i

{ü}i+1 =
1

β∆t2
({u}i+1 − {u}i)−

1

β∆t
{u̇}i − (

1

2β
− 1){ü}i .

(17)

Where equivalent stiffness matrix and equivalent load vector are respectively:

[K̂] = [K] +
1

β∆t2
[M ] +

γ

β∆t
[C] . (18)

{P̂}i+1 ={R}i+1 + [M ][
1

β∆t2
{u}i +

1

β∆t
{u̇}i + (

1

2β
− 1){ü}i]

+ [C][
γ

β∆t
{u}i + (

γ

β
− 1){u̇}i +

∆t

2
(
γ

β
− 2){ü}i] .

(19)
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Stability condition of Newmark-β method is:

∆t ≤ 1

π
√

2

1√
γ − 2β

Tn . (20)

When γ = 1/2 and β = 1/4, algorithm is unconditionally stable and has second
order accuracy at the same time. Relation among speed and accelerated speed at
the time of ti, and displacement at the time of ti+1 and ti -1 in central difference
method can be expressed by the following equation:

u̇i =
ui+1 − ui−1

2∆t
. (21)

üi =
ui+1 − 2ui + ui−1

∆t2
. (22)

Put recursion equation into force balance equation and the following equation
can be obtained:

[K̂]{u}i+1 = {P̂}i+1 . (23)

Where:
[K̂] =

1

∆t2
[M ] +

1

2∆t
[C] . (24)

{P̂}i+1 = {R}i − ([K]− 2

∆t2
[M ]){u}i − (

1

∆t2
[M ]− 1

2∆t
[C]){u}i−1 . (25)

Stability condition of central difference method is:

∆t ≤ Tn
π
. (26)

3.4. Simulated calculation flow of phase change

As for coupling problem of displacement field and phase field, adopted solution
strategy is to solve displacement field at the time of t firstly according to distribution
value of order parameter at the time oft,and then solve phase field at the time oft+∆t
according to obtained stress distribution value at the time of t to obtain distribution
value of order parameter at the time of t+ ∆t. Specific flow is shown in Fig. 2.

4. Experimental analysis

Numerical experiment is used for verification in our analytical solution in the sec-
tion. We take Mandel problem without crack into account under the first condition.
Purely broken mechanical problem is used for verification of crack model under the
second condition.
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Solve strain of phase change at the time of t and calculate 
equivalent force r (η1) according to order parameter value η1 at the 

time of t.

Solve dynamic equation or static equation and obtain displacement response 

Ut at the time of t.

Solve stress value σt at the 

time of t

Solve control equation of phase field according to stress value σt at the time of 

t and obtain order parameter value η t+Δt at the time of t+Δt

The result is stable 

Integration t of time domain in 

the beginning = 0

End 

Yes

No

t=t+Δt

 
  

Fig. 2. Simulated calculation flow diagram of phase change

4.1. Mandel problem

Considering two-dimensional Mandel problem, Mandel problem is usually used
to evaluate solving accuracy of flow and geomechanical coupling. Problem setting is
described in Fig. 3a. Domain is defined as:

Ω = [0, a]× [0, b] = [0, 20m]× [0, 10m] . (27)

Mechanical boundary condition is left boundary (ux|x=0 = 0) of zero horizontal
displacement. Zero vertical displacement of lower boundary is (uz|z=0 = 0) and uni-
form load of upper boundary is F |z=b = 500× l05Pa. In addition, displacement con-
straint condition of upper boundary is uz |∀x = constant. The domain is completely
saturated single-phase geotechnical material, compressibility is c = 2× 10−10Pa−1,
viscosity is µf = 2 × 10−3Pa, reference density is Pf = 1000 kg/m3, and initial
pressure of geotechnical material is p

∣∣Ω = 80.35× 105Pa . Assuming that Young
modulus of porous geotechnical material is E = 2 × 1010Pa, undrained or drained
Poisson ratio is 0.393 and 0.2 respectively and Biot modulus is 1. Reference porosity
is 0.2 and matrix permeability is 2 millidarcies.

Undrained Poisson ratio is adopted for initialization and drained Poisson ratio
is adopted to simulate transient behavior of system in the system. Comparison
with transient pressure of analytical solution value calculation is shown in Fig. 3b,
and pressure in the position of (x = 0, z = 0) is selected for comparison. Proposed
numerical value model can catch transient behavior of pressure solution accurately.
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  Fig. 3. Numerical and analytical solutions of Mandel problem

4.2. Single crack problem

Friction sliding of single crack is considered in two-dimensional setting. Ana-
lytical solution and numerical solution of the mechanical problem can be obtained.
Single crack will receive constant stress in infinite medium, σ∞ = −350 × 105Pa.
Young modulus and Poisson ratio of medium is E = 2 × 1010Pa and v = 0.25 re-
spectively. Frictional angel can be defined as β = 300. Crack length and angle of
inclination is respectively: 2b = 10m and α = 200. Penalty value is εN = 1 × 1011.
First-order and second-order tetrahedral element can be used for three-dimensional
discretization structure of the problem. Analytical expression tN of traction, stress
σT and tangential clearance can be respectively calculated into:

TN = −σ∞ sin2 (α) ,

σT = σ∞ sin (α) cos (α)− σ∞ sin2 (α) tan (α) ,

EgT = 4σT
(
1− v2

)√
b2 − (x− b)2 .

(28)

Comparison of analytical solution and numerical solution of several grid resolu-
tions is shown in Fig. 4. As for displacement, the scheme is pretty good. As for tN ,
analytical solution is constant value. Quality of numerical solution deteriorates in
the surrounding of crack. It is a well-known vertex singularity problem of numerical
solution of stress. Fig. 4b shows that increased resolution ratio and approximation
order can realize improvement of numerical solution. Special shape function in crack
top can be used for improvement.

5. Conclusions

An ultimate strain analysis method of geotechnical materials for foundation of
underground tunnel based on discretization finite element method of phase change
and displacement field was proposed in the Thesis to realize stress behavior analysis
of porous geotechnical materials under completely saturated condition. Effectiveness
of proposed method was verified by production scene experiment of fully coupled
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Fig. 4. Analytical solution and numerical solution

and nonlinear equation set and geotechnical materials. Research emphasis of the
next step will be focused on: (1) solver performance analysis of non-linear negative
influence related to cracks; (2) non-linear solver design of large-scale crack model;
(3) influence of model initialization on solving process and so on.
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